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Abstract: The kappa function is introduced as the function κ satisfying J(κ(τ)) =
λ(τ), where J and λ are the elliptic modular functions. A Fourier expansion of κ is
studied.
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1 Introduction

Let G and G′ be discrete subgroups of the group PGL2(C) of linear franctional
transformations, and r : G → G′ a surjective homomorphism. A holomorphic
function f(z) is said to be covariant of type (G, r,G′) if

f

(
az + b

cz + d

)
=

a′f(z) + b′

c′f(z) + d′ , for g =

[
a b
c d

]
∈ G, r(g) =

[
a′ b′

c′ d′

]
∈ G′.

When G′ is trivial, a covariant function is a G-automorphic function. We are inter-
ested in the following cases:

1. G = G′ is a finite group (r is the identity map). See [OY].

2. G = G′ is a triangle Fuchsian group (r is the identity map). An example of
covariant functions for G = PSL2(Z) is given in [KK].

3. G and G′ are triangle Fuchsian groups, and Ker(r) and G/Ker(r) are both
infinite groups.

In this paper, as a typical example of the third case, we introduce the kappa function
κ defined by J(κ(τ)) = λ(τ), where J and λ are the elliptic modular functions, and
study its Fourier expansion at i∞.
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2 The Schwarz map of the hypergeometric equa-

tion

We briefly recall in this section a classical theory of Schwarz maps (cf. [Yos]). Let
E(a, b, c) be the hypergeometric differential equation

x(1 − x)u′′ + (c − (a + b + 1)x)u′ − abu = 0,

where a, b and c are parameters. Its Schwarz map is defined by

s : X = C − {0, 1} 3 x 7−→ z = u1(x) : u2(x) ∈ Z = P1 := C ∪ {∞},

where u1 and u2 are two linearly independent solutions of E(a, b, c). The local
exponents of the equation E(a, b, c) at 0, 1 and ∞ are given as {0, 1−c}, {0, c−a−b}
and {a, b}, respectively. Denote the differences of the local exponents by

µ0 = 1 − c, µ1 = c − a − b, µ∞ = a − b,

and the monodromy group by Monod(µ0, µ1, µ∞). Then the Schwarzian derivative
{s; x} of s with respect to x is given as

−4{s; x} =
2s′s′′′ − 3(s′′)2

(s′)2

=
1 − µ2

0

x2 +
1 − µ2

1

(1 − x)2 +
1 + µ2

∞ − µ2
0 − µ2

1

x(1 − x)
.

We assume that the parameters a, b and c are rational numbers such that

k0 :=
1

|µ0|
, k1 :=

1

|µ1|
, k∞ :=

1

|µ∞|
∈ {2, 3, . . .} ∪ {∞},

and 1/k0 + 1/k1 + 1/k∞ < 1. Then the Schwarz map

s = s(k0,k1,k∞) : X −→ H = {z ∈ C | =(z) > 0}

gives the developing map of the universal branched covering with ramification indices
(k0, k1, k∞); its inverse map

s−1 : H − Fix(∆) −→ X

is single-valued, and induces the isomorphism (H − Fix(∆))/∆ ∼= X, where ∆ =
∆(k0,k1,k∞) is the monodromy group Monod(k0, k1, k∞) regarded as a transformation
group (Schwarz’s triangle group) of H, and Fix(∆) is the set of fixed points of ∆.

3 Covariant functions of type (Γ(2), r, ∆)

In particular, when (k0, k1, k∞) = (∞,∞,∞), the monodromy group ∆(∞,∞,∞) is
isomorphic to the principal congruence subgroup

Γ(2) = {g ∈ SL2(Z) | g ≡ id mod 2}/{±1},
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which has no fixed points, and the inverse of the Schwarz map is known by the
name of the lambda function λ(z) defined on H. Since λ : H → X is the universal
covering of X, for any (k0, k1, k∞) satisfying 1/k0 + 1/k1 + 1/k∞ < 1, the branched
covering

s−1 = s−1
(k0,k1,k∞) : H − Fix(∆) −→ X

factors λ, that is, there is a unique map f = f(k0,k1,k∞) : H → H−Fix(∆) such that

s−1(f(z)) = λ(z), z ∈ H,

where ∆ = ∆(k0,k1,k∞). The Galois correspondence can be illustrated as

{1} H The universal covering of X

| ↓ f

N H − Fix(∆) The universal branched covering of X

| ↓ s−1

π1(X) X

Here N is a normal subgroup of the fundamental group π1(X) of X corresponding
to the middle cover H − Fix(∆). Actually, N is given as follows: Let γ0 (resp. γ1

and γ∞) be a simple loop around x = 0 (resp. 1 and ∞), and regard these loops as
elements of π1(X). Then N is the smallest subgroup of π1(X) containing

γk0
0 , γk1

1 and γk∞
∞ .

At any rate, we have
π1(X)/N ∼= ∆;

let r : π1(X) → ∆ denote the projection.

For a point z ∈ H, put w = f(z) and x = λ(z). Let γ be a loop in X with base
x. The lift of γ under λ is a path in H connecting z and g(z) for some g ∈ Γ(2);
this gives the isomorphism

π1(X, x) ∼= Γ(2).

The lift of γ under the Schwarz map s is a path in H − Fix(∆) connecting w and
g′(w) for some g′ ∈ ∆; the correspondence

Γ(2) 3 g 7−→ g′ = r(g) ∈ ∆

is the homomorphism r via the identification π1(X, x) ∼= Γ(2).

Proposition 1 Our function f is covariant of type (Γ(2), r, ∆).

Proof. We have

f(g(z)) = g′(w) = g′(f(z)), g ∈ Γ(2).
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The following illustration may help the reader.

H 3 z
λ∗(γ)−→ g(z)

↓ ↓ ↓

H − Fix(∆) 3 w
s∗(γ)−→ r(g)(w)

↓ ↓

X 3 x
γ−→ x

3.1 The kappa function

We are especially interested in the case

(k0, k1, k∞) = (3, 2,∞).

The monodromy group ∆(3,2,∞) is isomorphic to Γ(1) = PSL2(Z), and the map s−1

is usually denoted by J . We name the function f as the kappa function κ; this is
because the letter k is situated between j and l in the alphabetic sequence. So we
have

J(κ(z)) = λ(z).

We normalize the maps in question as

{1} H z = 0 ∞ 1

| ↓ κ ↓ ↓ ↓

N H − Γ(1){i, ρ} w = ρ i ∞

| ↓ J ↓ ↓ ↓

Γ(2) X x = 0 1 ∞

where ρ = exp(2πi/6). Let γ0 and γ1 be the simple loops (with base point in the
lower half x-plane) around 0 and 1 as are shown in Figure 1. According to the
normalization above, γ0 and γ1, as elements of π1(X), are identified respectively
with the two generators

g0 : z 7→ z

−2z + 1
and g∞ : z 7→ z + 2

of Γ(2); they fix 0 and ∞, respectively. Then the subgroup N is the smallest normal
subgroup of Γ(2) containing

g3
0 : z 7→ z

−6z + 1
and g2

∞ : z 7→ z + 4,

and the isomorphism Γ(2)/N ∼= Γ(1) is given by the surjective homomorphism
r : Γ(2) → Γ(1) defined by

g0 7−→
(
w 7→ 1

1 − w

)
and g∞ 7−→

(
w 7→ −1

w

)
.
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Thus our function κ satisfies

κ
(

z

−2z + 1

)
=

1

1 − κ(z)
and κ(z + 2) =

−1

κ(z)
.

0 1 z-plane 0 1κ

g∞

g0

r(g∞) r(g0)

i
ρ

w-plane

γ0 γ1

0 1 x-plane

λ J

Figure 1: A geometric explanation of the correspondence: γ0 ↔ g0, γ1 ↔ g∞

3.2 A fundamental domain for N

Recall that the map κ : H → H− Γ(1){i, ρ} is the universal cover (of the infinitely
punctured upper half w-plane H − Γ(1){i, ρ}) with the transformation group N ⊂
Γ(2). To obtain a fundamental domain of N in the upper half z-plane, we cut the
punctured upper half w-plane so that it becomes simply connected.

Our cut shown in Figure 2 is invariant under the action of Γ(2), where Γ(2) is here
regarded as the subgroup of Γ(1) acting on the w-space. In the figure, a fundamental
domain of Γ(2) is shown as the union of twelve triangles 1, . . . , 6, 1′, . . . , 6′, each of
which is a fundamental domain of the extended triangle group of Γ(1). Our cuts are
now given by

1 ∩ 6, 1′ ∩ 2′, 3′ ∩ 4′, 5′ ∩ 6′, 6′ ∩ 1′.

It is easy to check that the complement of the Γ(2)-orbits of these cuts is connected
and simply connected. If we draw this connected net of triangles on the z-plane
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1

2
3 4

5

1′

2′

3′4′
5′

6′

−1 0 1
w-plane

6

Figure 2: Γ(2)-invariant cuts of the w-plane H − Γ(1){i, ρ}

through κ, shown in Figure 1, making use of the Schwarz reflection principle, we
eventually obtain a fundamental domain of N bounded by infinitely many arcs as
is shown in Figure 3.

0 1 2−2 −1

2′ 2 1 1′

3′ 3

4

Figure 3: A fundamental domain of N in the z-plane H

3.3 A Fourier expansion of the kappa function

In this section we compute the Fourier development of κ(z) at z = i∞. Since
κ(z + 4) = κ(z) and κ(∞) = i by definition, the Fourier series of κ(z) has the form

κ(z) = i(1 + a1q + a2q
2 + a3q

3 + · · ·),

where

q := exp
πiz

2
.
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Proposition 2 1) The nth Fourier coefficient an of κ(z) can be expressed as a
polynomial of degree n in a := a1 with rational coefficients, starting with an/2n−1+· · ·
and having no constant term. The polynomial is even or odd according as n is even
or odd.

2) The value of a is explicitly given by

a = −i
32√

3

π2

Γ(1/4)4 = −1.0552729262852 · · · × i.

Example 1

a1 = a,

a2 =
1

2
a2,

a3 =
1

4
a3 − 16

27
a,

a4 =
1

8
a4 − 16

27
a2,

a5 =
1

16
a5 − 4

9
a3 +

98

1215
a,

a6 =
1

32
a6 − 8

27
a4 +

934

3645
a2,

a7 =
1

64
a7 − 5

27
a5 +

787

2430
a3 − 1504

6561
a,

a8 =
1

128
a8 − 1

9
a6 +

41

135
a4 − 9088

32805
a2.

Proof. For 1), we shall establish recursion relations among an’s. First, by the identity

κ(z + 2) = − 1

κ(z)
,

we immediately obtain the recursion with which the even index coefficients are
determined by the previous ones.

Lemma 1 For each even integer n ≥ 2, we have

an =
n/2−1∑

i=1

(−1)i−1aian−i + (−1)n/2−1
a2

n/2

2
. (1)

In particular, a2 = a2
1/2, a4 = a1a3 − a2

2/2, a6 = a1a5 − a2a4 + a2
3/2, . . ..

Proof. Since we have κ(z + 2) = i(1− a1q + a2q
2 − a3q

3 + · · ·), we get the recursion
by expanding κ(z + 2)κ(z) and equating the coefficient of qn with 0.

Note κ(z + 2)κ(z) is the even function of q and so for odd n the coefficient is
automatically 0. To determine an for odd n, we make use of the explicit formula
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for the Schwarzian derivative {κ; z}. To describe this, we introduce Jacobi’s theta
constants;

θ0(z) =
∑
n∈Z

(−1)nq2n2

, θ2(z) =
∑
n∈Z

q
(2n+1)2

2 , θ3(z) =
∑
n∈Z

q2n2

.

They satisfy the famous identity θ0(z)4 + θ2(z)4 = θ3(z)4, which will be used later.
By these theta’s, our λ function can be expressed as

λ(z) =
θ0(z)4

θ3(z)4 = 1 − 16q2 + 128q4 − 704q6 + · · · .

In fact, the Γ(2)-invariance is classical and the only thing we have to check is the
values λ(∞) = 1, λ(0) = 0 and λ(1) = ∞ that we have chosen to normalize λ. But
this is readily seen by the above and the following expansions

λ
(
−1

z

)
=

θ2(z)4

θ3(z)4 = 16q2 − 128q4 + 704q6 + · · · ,

λ
(
1 − 1

z + 1

)
=

θ3 (−1/(z + 1))4

θ0 (−1/(z + 1))4 =
θ3(z)4

θ2(z)4 =
1

16q2 +
1

2
+

5

4
q2 + · · · ,

which can be derived from the well-known transformation formulae (cf. [Mum])

θ0(z + 1) = θ3(z), θ0(−1/z) =
√

z/i θ2(z),

θ2(z + 1) = eπi/4θ2(z), θ2(−1/z) =
√

z/i θ0(z),

θ3(z + 1) = θ0(z), θ3(−1/z) =
√

z/i θ3(z).

Lemma 2 We have

2κ′κ′′′ − 3κ′′2

κ′2 = −1

9

(
5θ0(z)4 θ3(z)4 + 4θ3(z)8

)
, (2)

where ′ = q d
dq = 2

πi
d
dz .

Proof. Since we have

−4{λ−1; x} =
1

x2 +
1

(1 − x)2 +
1

x(1 − x)
,

−4{J−1; x} =
1 − (1/3)2

x2 +
1 − (1/2)2

(1 − x)2 +
1 − (1/3)2 − (1/2)2

x(1 − x)
,

the connection formula of the Schwarzian derivative

{κ; z} = {J−1 ◦ λ; z} = {λ; z} + {J−1; x}
(

dx
dz

)2

= (−{λ−1; x} + {J−1; x})
(

dx
dz

)2
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allows us to express the Schwarzian {κ; z} as a rational function of x = λ(z) and its
derivative (we multiply (2/πi)2 on both sides to have a formula with ′ = q d/dq):

2κ′κ′′′ − 3κ′′2

κ′2 = −λ′(z)2

36

(
5λ(z) + 4

λ(z)2(1 − λ(z))2

)
.

The lemma then follows from the identities

λ′(z) = −2θ2(z)4 λ(z) and 1 − λ(z) =
θ2(z)4

θ3(z)4 .

Now we use (2) to obtain another recursion for an. Put

1

9

(
5θ0(z)4 θ3(z)4 + 4θ3(z)8

)
=

∞∑
n=0

bnqn.

By the formulas

θ0(z)4θ3(z)4 = 1 + 16
∞∑

n=1

∑
d|n

(−1)dd3

 q4n,

θ3(z)8 = 1 + 16
∞∑

n=1

(−1)n

∑
d|n

(−1)dd3

 q2n,

the bn is explicitly given by b0 = 1 and

bn =



0, for n : odd,

(−1)n/2 64

9

∑
d|n/2

(−1)dd3, for n ≡ 2 mod 4,

(−1)n/2 64

9

∑
d|n/2

(−1)dd3 +
80

9

∑
d|n/4

(−1)dd3, for n ≡ 0 mod 4.

Equating the coefficients of qn+1 on both sides of

2κ′κ′′′ − 3κ′′2 = −κ′2
∞∑

n=0

bnq
n,

we obtain, after some manipulation, the recursive relation

2n(n − 1)(n − 2)a · an = −
n−1∑
i=2

i(n + 1 − i)
(
2(n + 1)2 − 7i(n + 1) + 5i2 + 1

)
aian+1−i

−
n−1∑
j=1

bj

n−j∑
i=1

i(n + 1 − j − i)aian+1−j−i.

With this recursion and a1 = a, a2 = a2/2, we can deduce all the assertions in 1) of
Proposition 2 by induction. For parity result we should note that bj = 0 for j odd,
and for the top term we use the identity

n−1∑
i=2

i(n + 1 − i)
(
2(n + 1)2 − 7i(n + 1) + 5i2 + 1

)
= −2n(n − 1)(n − 2)
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and note the second sum on the right has lower degree.
Next we evaluate a. Differentiating the identity J(κ(z)) = λ(z) twice and mul-

tiplying both sides by
(

2
πi

)2
, we have

d2J

dw2
(κ(z))

(
q
dκ

dq
(z)

)2

+
dJ

dw
(κ(z))

(
q

d

dq

)2

κ(z) =

(
q

d

dq

)2

λ(z) = −64q2 + · · · (3)

After dividing this by q2, we look at the limit when z → i∞ (so w → i and q → 0).
Since (

q
dκ

dq
(z)

)2

= −a2q2 + · · · ,
(
q

d

dq

)2

κ(z) = iaq + · · · ,

we need the limiting values of d2J(w)/dw2 and (dJ(w)/dw)/q as w → i (w = κ(z)).
To compute these, we use the classical Eisenstein series

E2(w) = 1 − 24
∞∑

n=1

(
∑
d|n

d) e2πinw,

E4(w) = 1 + 240
∞∑

n=1

(
∑
d|n

d3) e2πinw,

E6(w) = 1 − 504
∞∑

n=1

(
∑
d|n

d5) e2πinw,

and the cusp form

∆(w) = e2πiw
∞∏

n=1

(1 − e2πinw)24.

Lemma 3 We have

dJ

dw
(w)

q
−→ −2π2iaE4(i) (as w → i)

and
d2J

dw2 (i) = −2π2E4(i).

Proof. We use the formula

dE6

dw
(w) = πi(E2(w)E6(w) − E4(w)2)

as well as the value E6(i) = 0 and dw/dz = dκ(z)/dz = −πaq/2+ · · · to obtain (use
de L’Hôpital’s rule)

lim
z→i∞

E6(w)

q
= lim

z→i∞

πi
(
E2(w)E6(w) − E4(w)2

) dw

dz
πi

2
q

= πaE4(i)
2.
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Hence by
dJ

dw
(w) = −2πi

E6(w)

E4(w)
J(w) and J(i) = 1,

we obtain

lim
z→i∞

dJ

dw
(w)

q
−→ −2π2iaE4(i).

For the second value, we compute

d2J

dw2 (w) = −2πi

(
d

dw

(
J(w)

E4(w)

)
E6(w) +

J(w)

E4(w)
· πi(E2(w)E6(w) − E4(w)2)

)

and use E6(i) = 0, J(i) = 1.

Applying this lemma to the identity (3) together with the evaluation

E4(i) =
3

64

Γ(1/4)8

π6 ,

we obtain

a2 = −1024

3

π4

Γ(1/4)8
.

Since κ(z) tends to i from the right on the unit circle as z goes up to infinity along
the pure-imaginary axis, ia must be positive. This proves 2) of Proposion 2.
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