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Abstract: The kappa function is introduced as the function x satisfying J(x(7)) =
A(7), where J and A are the elliptic modular functions. A Fourier expansion of « is
studied.
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1 Introduction

Let G and G’ be discrete subgroups of the group PGLs(C) of linear franctional
transformations, and r : G — G’ a surjective homomorphism. A holomorphic
function f(z) is said to be covariant of type (G,r,G') if

az+b\  df(z)+ 0 _|a b | d Y ,
f<62+d>_c’f(z)—|—d” for g—lc d}EG’ r(g)—[c, d,]eG.

When G’ is trivial, a covariant function is a G-automorphic function. We are inter-
ested in the following cases:

1. G = G’ is a finite group (r is the identity map). See [OY].

2. G = (' is a triangle Fuchsian group (r is the identity map). An example of
covariant functions for G = PSLy(Z) is given in [KK].

3. G and G’ are triangle Fuchsian groups, and Ker(r) and G/Ker(r) are both
infinite groups.

In this paper, as a typical example of the third case, we introduce the kappa function
r defined by J(k(7)) = A(7), where J and A are the elliptic modular functions, and
study its Fourier expansion at 200.
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2 The Schwarz map of the hypergeometric equa-
tion
We briefly recall in this section a classical theory of Schwarz maps (cf. [Yos]). Let
E(a,b,c) be the hypergeometric differential equation
r(1—2)u" + (c— (a+ b+ 1)z)u — abu =0,
where a,b and ¢ are parameters. Its Schwarz map is defined by
s: X=C—{0,1} 22— 2z =u(x) : up(x) € Z =P := CU {0},

where u; and uy are two linearly independent solutions of E(a,b,c). The local
exponents of the equation E(a, b, c) at 0,1 and oo are given as {0, 1 —c}, {0,c—a—b}
and {a, b}, respectively. Denote the differences of the local exponents by

po=1—c, pp=c—a—>b, s =a—0D>,

and the monodromy group by Monod (g, f41, fteo ). Then the Schwarzian derivative
{s;x} of s with respect to z is given as

B 28/81/1 _ 3(81/)2

_4{5;x} - (SI>2

T ey S ey ey e iy

x (1—2) (1l —x)
We assume that the parameters a,b and ¢ are rational numbers such that
1 1 1
ko :=—, kii=—1 koo =— € {2,3,...} U{o0},
| o |1 | oo

and 1/ky + 1/ky + 1/ko < 1. Then the Schwarz map
5= Skokike) X — H={2€ C|J(z) >0}

gives the developing map of the universal branched covering with ramification indices
(ko, k1, koo); its inverse map

s H - Fix(A) — X

is single-valued, and induces the isomorphism (H — Fix(A))/A = X, where A =
A (ko k1 ko) 18 the monodromy group Monod (Ko, k1, k) regarded as a transformation
group (Schwarz’s triangle group) of H, and Fix(A) is the set of fixed points of A.

3 Covariant functions of type (I'(2),7, A)

In particular, when (ko, k1, ko) = (00,00, 00), the monodromy group A(s cc,00) 18
isomorphic to the principal congruence subgroup

T(2) = {g € SLy(Z) | g = id mod 2}/{=£1},
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which has no fixed points, and the inverse of the Schwarz map is known by the
name of the lambda function A(z) defined on H. Since A : H — X is the universal
covering of X, for any (ko, k1, koo ) satisfying 1/ky + 1/ky + 1/ko < 1, the branched
covering

5 = Sk ke - H = Fix(A) — X

factors A, that is, there is a unique map f = fu ki k) : H = H — Fix(A) such that
sTH(f(2) =Az), z€H,

where A = A k1 k0 )- The Galois correspondence can be illustrated as

{1} H The universal covering of X
| Lf
N  H —Fix(A) The universal branched covering of X
| Los™
1 (X) X

Here N is a normal subgroup of the fundamental group m(X) of X corresponding
to the middle cover H — Fix(A). Actually, N is given as follows: Let 7o (resp. m
and v,) be a simple loop around x = 0 (resp. 1 and 00), and regard these loops as
elements of 71 (X). Then N is the smallest subgroup of 71 (X) containing

ko k1 koo
Y%, vt and .

At any rate, we have

m(X)/N = A;
let 7 : m(X) — A denote the projection.

For a point z € H, put w = f(z) and # = A(z). Let v be a loop in X with base
x. The lift of v under A is a path in H connecting z and ¢(z) for some g € T'(2);
this gives the isomorphism
m(X,x) = T(2).

The lift of v under the Schwarz map s is a path in H — Fix(A) connecting w and
¢'(w) for some ¢’ € A; the correspondence

['(2)5g—yg' =r(g e
is the homomorphism r via the identification m (X, z) = I'(2).
Proposition 1 Our function f is covariant of type (I'(2),7, A).
Proof. We have

flg9(2) =g'(w) =4'(f(2)), geT(2). ]



The following illustration may help the reader.

H 5z —  g(2)

| | !
H-Fix(A) 3> w 22 r(g)(w)

| |

X 5z 5 x

3.1 The kappa function
We are especially interested in the case

(kO) kl) koo) - (37 2a OO)

The monodromy group A2 s is isomorphic to I'(1) = PSLy(Z), and the map s~

is usually denoted by J. We name the function f as the kappa function k; this is
because the letter k is situated between j and 1 in the alphabetic sequence. So we
have

J(k(z)) = A(2).

We normalize the maps in question as

(1} H 2= 0 0o 1
| | & Ll
N  H-TW{i,p} w= p i o
| 1 J Ll
T'(2) X r= 0 1

where p = exp(27i/6). Let vy and v, be the simple loops (with base point in the
lower half z-plane) around 0 and 1 as are shown in Figure 1. According to the
normalization above, vy and 7, as elements of m(X), are identified respectively
with the two generators

ﬁ and Jo : R 2 + 2
of I'(2); they fix 0 and oo, respectively. Then the subgroup N is the smallest normal
subgroup of I'(2) containing

gy 2

3

go i 2+ and g2 1z 244,

—6z+1

and the isomorphism I'(2)/N = T'(1) is given by the surjective homomorphism
r:1'(2) — I'(1) defined by

1 -1
gou—>(wn—>) and goo»—><w'—>>.
1 —w w
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Thus our function s satisfies

z 1 —1
" (—22 + 1) 1 —k(2) and (2 +2)

Joo

g0

0 1 z-plane K w-plane 0 1

N

Figure 1: A geometric explanation of the correspondence: vy < go, 71 < Joo

3.2 A fundamental domain for N

Recall that the map x : H — H —I'(1){4, p} is the universal cover (of the infinitely
punctured upper half w-plane H — I'(1){4, p}) with the transformation group N C
['(2). To obtain a fundamental domain of N in the upper half z-plane, we cut the
punctured upper half w-plane so that it becomes simply connected.

Our cut shown in Figure 2 is invariant under the action of I'(2), where I'(2) is here
regarded as the subgroup of I'(1) acting on the w-space. In the figure, a fundamental
domain of I'(2) is shown as the union of twelve triangles 1,...,6, 1’,...,6', each of
which is a fundamental domain of the extended triangle group of I'(1). Our cuts are
now given by

1n6, 1'n?2, 3n4, 5n6, 6nl.
It is easy to check that the complement of the I'(2)-orbits of these cuts is connected
and simply connected. If we draw this connected net of triangles on the z-plane

5



6’ o1 6

w-plane

Figure 2: I'(2)-invariant cuts of the w-plane H — I'(1){i, p}

through x, shown in Figure 1, making use of the Schwarz reflection principle, we
eventually obtain a fundamental domain of N bounded by infinitely many arcs as
is shown in Figure 3.

o 2 1 it
Sy 3
—2 —1 0 1 2

Figure 3: A fundamental domain of NV in the z-plane H

3.3 A Fourier expansion of the kappa function

In this section we compute the Fourier development of k(z) at z = ico. Since
k(z+4) = k(z) and k(0c0) = i by definition, the Fourier series of £(z) has the form

k(2) = i(1 4 a1q + aeq® + azq® + -+ ),

where ,
Tz
= exp —.
q P 9



Proposition 2 1) The nth Fourier coefficient a,, of k(z) can be expressed as a
polynomial of degree n in a := a; with rational coefficients, starting with a™ /2" 1+ - -
and having no constant term. The polynomial is even or odd according as n is even

or odd.
2) The value of a is explicitly given by

32 2

a=—1

Example 1
a = a,
1
o = 5&2,
15 16
T
1 16
ays = §a4—?7a2,
1 4 98
as = —a5—fa3+7a,

g = —=a — —-a +

1 . 5 5 787 , 1504

ay = —a — —=a a” — a

T 64 27 2430 6561
1 1 41

128" T 9% T135% T 32805

Proof. For 1), we shall establish recursion relations among a,,’s. First, by the identity

L
k(z)’

we immediately obtain the recursion with which the even index coefficients are
determined by the previous ones.

K(z+2)=—

Lemma 1 For each even integer n > 2, we have

n/2—1

2

, a2

On = Z (_1)Z_laian_i + (_1)n/2—1%. O
=1

In particular, ay = a2/2,a4 = aya3 — a3/2,a6 = ajas — asay + a3/2, . ...

Proof. Since we have r(z +2) = i(1 — a1q + a2¢® — azq® + - - ), we get the recursion
by expanding k(z + 2)k(z) and equating the coefficient of ¢™ with 0. |

Note k(z + 2)k(z) is the even function of ¢ and so for odd n the coefficient is
automatically 0. To determine a, for odd n, we make use of the explicit formula



for the Schwarzian derivative {x;z}. To describe this, we introduce Jacobi’s theta
constants;

n 2n2 (@n+1)? n2
Oo(2) = D (=1)"¢™, ba(z) =D ¢ = , bi(z) =) ¢".
neZ neZ neZ
They satisfy the famous identity 6y(2)* + 62(2)* = 65(2)*, which will be used later.
By these theta’s, our A function can be expressed as

Az) = ;= 1—16¢% + 128¢" — 704¢° + - - -.
0s(2)

In fact, the I'(2)-invariance is classical and the only thing we have to check is the
values A(00) =1, A(0) = 0 and A(1) = oo that we have chosen to normalize A\. But
this is readily seen by the above and the following expansions

1 4
AG) = % g asgt 4 7048 4 -
2 05(z2)

1 5,
- bR
b (—1/(z+ 1) a(2)' 16¢ 2 47

A(l— L ) 0 (=1/(z+1)" Gs(x)t 1

z+1 -

which can be derived from the well-known transformation formulae (cf. [Mum])

boz+1) = 05(2), bo(~1/2) =\[2/i 6a(2),
0oz +1) = y(z),  Oa(=1/2) = \[2/i bo2),
O5(z+1) = 0,(2), O5(—1/2) = \/z/i 0s(2).

Lemma 2 We have

QH/KH/ _ 3’€//2 1
— =3 (500(2)" B(2)* + 465(2)*) , (2)
r_gd 2 d
where " = Udq = midz

Proof. Since we have

R R et
ey - LW 1O 1m0 -

the connection formula of the Schwarzian derivative
2
frizh={J o Xz} = {nzh+ (U (4E)
2
= (={)\1L —1. dx
— (—{\ Lz} {J Y2} (dz)
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allows us to express the Schwarzian {k;z} as a rational function of x = A(2) and its
derivative (we multiply (2/7i)? on both sides to have a formula with ' = ¢d/dq):

26K — 3K _ N (2)? ( bA(z) + 4 >
K'? 36 \A(2)%(1 — A(2))?

The lemma then follows from the identities

N(2) = =205(2)* M(z) and 1 — A(2)

Now we use (2) to obtain another recursion for a,,. Put

é (590(2)4 93( ) + 493 ) Z bnq".

By the formulas

0o(2)*05(2)" = 1+16 Z (Z dd3)

dln
05(2)° = 1+16Z (Z 1)dd3) ",
dn

the b, is explicitly given by by = 1 and

0, for n : odd,
4
(—1)"/26— (=14, for n = 2 mod 4,
bn = 9 din/2
/264 ap 80 d g3 _
(=)2— > (=)'’ + — > (-1)%’,  for n =0mod 4.
9 din/2 d|n/4

Equating the coefficients of ¢"*! on both sides of
o0
21%/ " -3 I€”2 /4;/2 Z bn qn’

we obtain, after some manipulation, the recursive relation

i
L

2n(n —1)(n—2)a-a, = — iln+1—1) (2(n +1)2 = Ti(n 4+ 1) + 5i* + 1) i1

.
[\

—_

- bj ) i(n+1—j—1i)aini1—j—-

3

<
Il
—
-
Il
—

With this recursion and a; = a, ay = a*/2, we can deduce all the assertions in 1) of
Proposition 2 by induction. For parity result we should note that b; = 0 for j odd,
and for the top term we use the identity

z_j (n+1—1) (2n+1)> = Ti(n+1) + 5 + 1) = =2n(n — 1)(n — 2)

=2



and note the second sum on the right has lower degree.
Next we evaluate a. Differentiating the identity J(k(z)) = A(z) twice and mul-

2
tiplying both sides by (%) , we have

After dividing this by ¢%, we look at the limit when z — 0o (so w — ¢ and g — 0).

Since ) )
dr 9. d .
(1550) = (o) e =

we need the limiting values of d*J(w)/dw? and (dJ(w)/dw)/q as w — i (w = k(2)).
To compute these, we use the classical Eisenstein series

Ey(w) = 1—-24 i(z d) e*minme

n=1 d|n

Eyw) = 1+240> (O d*) e,

n=1 d|n

Eg(w) = 1-1504 i(z d5) e2min

n=1 djn

and the cusp form

A(’LU) — 627T7Lw H(l . 627”;”“))24.
n=1

Lemma 3 We have

dJ
o' N |
. — =21%iaFEy (i) (as w — 1)
and .

Proof. We use the formula
aEy
dw

as well as the value Fg(i) = 0 and dw/dz = dr(z)/dz = —maq/2+ - - - to obtain (use
de L'Hopital’s rule)

(w) = mi( Ea(w) Eg(w) — Ey(w)?)

dw
i ( Fa(w) Eg(w) —E4(w)2 —
q Eq
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Hence by

d E
di(w) — omi Eigj(w) and  J(i) = 1,
we obtain
dJ
lim YW — —27%iaE,(i).
Z—100 q

For the second value, we compute

o) = —2mi (0 (9] i) + 7 il Batw) ) — i)

dw? dw \ Ey(w)

and use Eg(i) =0, J(i) = 1. |
Applying this lemma to the identity (3) together with the evaluation

3 D(1/4)®
Ey (i) = —
4(1) 64 7_(_6 )
we obtain
9 1024 7t
= ————.
3 T'(1/4)8
Since k(z) tends to ¢ from the right on the unit circle as z goes up to infinity along
the pure-imaginary axis, ia must be positive. This proves 2) of Proposion 2. |
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